

Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD based vaccine produced with the thermophilic filamentous fungal expression system Thermothelomyces heterothallica, C1.

Albert Osterhaus (■ albert.osterhaus@tiho-hannover.de)

University of Veterinary Medicine Hannover, Foundation

Mariana Gonzalez-Hernandez (

mariana.gonzalez.hernandez@tiho-hannover.de)

University of Veterinary Medicine Hannover, Foundation https://orcid.org/0000-0001-7019-2165

Franziska Kaiser (☐ franziska.kaiser@tiho-hannover.de)

University of Veterinary Medicine Hannover, Foundation

Imke Steffen (■ Imke.Steffen@tiho-hannover.de)

University of Veterinary Medicine Hannover, Foundation

Malgorzata Ciurkiewicz (■ Malgorzata.Ciurkiewicz@tiho-hannover.de)

University of Veterinary Medicine Hannover, Foundation

Geert van Amerongen (

amerongen@viroclinics.com)

Erasmus MC

Dyadic Netherland B.V

Mark Emalfarb (memalfarb@dyadic.com)

Dyadic International, Inc. https://orcid.org/0000-0003-4095-5445

Markku Saloheimo (✓ markku.saloheimo@vtt.fi)

VTT Technical Research Centre of Finland Ltd

Marilyn Wiebe (marilyn.wiebe@vtt.fi)

VTT Technical Research Centre of Finland Ltd

VTT Technical Research Centre of Finland Ltd

Irina Albulescu (irina.c.albulescu@gmail.com)

Faculty of Veterinary Medicine, Utrecht University

Berend-Jan Bosch (≥ b.j.bosch@uu.nl)

Utrecht University https://orcid.org/0000-0002-3864-232X

Wolfgang Baumgärtner (■ Wolfgang.Baumgaertner@tiho-hannover.de)

University of Veterinary Medicine Hanover

Bart Haagmans (≥ b.haagmans@erasmusmc.nl)

Erasmus University Medical Center https://orcid.org/0000-0001-6221-2015

Article

Keywords:

DOI: https://doi.org/

License: © ① This work is licensed under a Creative Commons Attribution 4.0 International License.

Read Full License

Additional Declarations: There is a conflict of interest RT and ME work for Dyadic International, Inc. and may use the vaccine for commercial use. BJB and BLH filed a patent application on coronavirus nanoparticle vaccines. Other authors have no competing interests to declare

- 1 Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD
- 2 based vaccine produced with the thermophilic filamentous fungal expression
- 3 system Thermothelomyces heterothallica, C1.
- 4
- 5 Mariana Gonzalez-Hernandez^{1†}; Franziska Karola Kaiser^{1†}, Imke Steffen^{1,2}, Malgorzata
- 6 Ciurkiewicz³, Geert van Amerongen⁴, Ronen Tchelet⁵, Mark Emalfarb⁵, Markku Saloheimo⁶,
- 7 Marilyn G. Wiebe⁶, Marika Vitikainen⁶, Irina C. Albulescu⁷, Berend-Jan Bosch⁷, Wolfgang
- 8 Baumgärtner³, Bart L. Haagmans⁸, Albert D.M.E. Osterhaus¹*

9

- 10 ¹Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine
- Hannover, Foundation, Hannover, Germany
- 12 ²Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation,
- 13 Germany
- ³Department of Pathology, University of Veterinary Medicine Hannover, Foundation,
- 15 Hannover, Germany
- ⁴Viroclinics Xplore, Schaijk, the Netherlands
- ⁵Dyadic International, Inc., Jupiter, Florida USA
- 18 ⁶VTT Technical Research Centre of Finland Ltd., Espoo, Finland
- ⁷Virology Section, Infectious Diseases and Immunology Division, Department of
- 20 Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht,
- 21 the Netherlands
- ⁸Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands

- 24 * Corresponding author. Email: albert.osterhaus@tiho-hannover.de
- [†]These authors contributed equally to this work.

Abstract

26

27 The emergency use of vaccines has been the most efficient way to control the ongoing 28 COVID-19 pandemic. However, the emergence of SARS-CoV-2 variants of concern has 29 reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the 30 SARS-CoV-2 spike protein is the main target for virus neutralizing (VN) antibodies. Here, 31 we evaluated the immunogenicity and efficacy of a SARS-CoV-2 RBD vaccine candidate 32 produced in the *Thermothelomyces heterothallica* (formerly Myceliophthora thermophila), 33 C1 protein expression system, in a Syrian golden hamster (Mesocricetus auratus) infection 34 model. One dose of 10 µg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a 35 nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN 36 antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. 37 The VN antibodies, neutralized SARS-CoV-2 variants of concern D614G, Alpha, Beta and 38 Gamma. Our results support the use of the *Thermothelomyces heterothallica*, C1 protein 39 expression system to produce recombinant vaccines against SARS-CoV-2 and other virus 40 infections, in order to help overcome limitations associated with the use of mammalian 41 expression systems. 42 43 Key words: SARS-CoV-2, receptor binding domain, RBD, vaccine, neutralizing antibodies, 44 hamster, Thermothelomyces heterothallica, C1, filamentous fungus

45

46

47

Introduction

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel member of the family *Coronaviridae*, has so far resulted in more than 600 million cases and more than 6 million deaths worldwide ^{1–4}. Vaccination against

SARS-CoV-2 with several new generation vaccines has successfully reduced the spread and
clinical impact of COVID-19 $^{5-7}$. Therefore, the World Health Organization has advocated
vaccination as the best way to combat the ongoing pandemic 8. Given that the spike (S)
protein of coronaviruses is the main target for virus neutralizing (VN) antibodies, vaccine
development efforts have largely focused on this viral protein ^{9,10} . The SARS-CoV-2 S
protein mediates viral attachment and entry. The S protein consists of two subunits, the S1
domain harbouring the receptor binding domain (RBD), and S2 harbouring the fusion
peptide ¹¹ . Currently, the most frequent vaccine platforms used world-wide against SARS-
CoV-2 are mRNA, recombinant adenovirus and subunit vaccines, based on the expression of
the S protein. Unfortunately, limited production capacity, high cost of goods and logistic
hurdles limit their effective use world-wide. Furthermore, largely due to escape mutations
arising in the S protein, global circulation of SARS-CoV-2 variants in a partially immune
population, continues to raise challenges in containing the ongoing pandemic ¹² . Alternative
production platforms that do not suffer from these limitations, may offer opportunities for the
development of COVID-19 vaccines that can more effectively be used in low- and middle-
income countries. The protein expression technology used for vaccine development in the
present study is based on the use of the <i>Thermothelomyces heterothallica</i> fungus (C1). It
offers a system that uses less sophisticated media and fermentation technology and produces
higher yields at lower cost than mammalian cell based systems ^{13,14} . This technology may
provide a new avenue towards a global vaccination strategy. Here we have used the Syrian
golden hamster model to evaluate the immunogenicity and efficacy of SARS-CoV-2 RBD
based vaccine candidates produced with the <i>Thermothelomyces heterothallica</i> C1 protein
expression system.

Materials and Methods

77 Virus 78 SARS-CoV-2 Wuhan strain (isolate BetaCoV/Munich/BavPat1/2020; European Virus 79 Archive Global #026 V-03883; kindly provided by Dr. C. Drosten) was obtained from a 80 clinical case in Germany diagnosed after returning from China and propagated on Vero E6 cells as previously described ¹⁵. All virus handling was performed in a Class II Biosafety 81 82 Cabinet under BSL-3 conditions. 83 84 Illumina sequencing 85 For deep- sequencing, RNA was extracted as described above and subsequently cDNA was 86 generated using ProtoscriptII reverse transcriptase enzyme (New England 87 BiotechnologieBioLabs) according to the manufacturer's protocol. A SARS-CoV-2 specific multiplex PCR was performed as recently described ²³. In short, primers for 86 overlapping 88 89 amplicons spanning the entire genome were designed using primal scheme 90 (http://primal.zibraproject.org/). The amplicon length was set to 500 bp with 75 bp overlap 91 between the different amplicons. Amplicons were purified with 0.8x AMPure XP beads 92 (Beckman Coulter) and 100 ng of DNA was converted into paired-end Illumina sequencing 93 libraries using KAPA HyperPlus library preparation kit (Roche) with the KAPA unique dual-94 indexed adapters (Roche), following the manufacturer's recommendations. The barcode-95 labeled samples were pooled and analyzed on an Illumina sequencer V3 MiSeq flowcell 96 $(2 \times 300 \text{ cycles})$. Adapters from the paired-end sequencing reads were trimmed using 97 cutadapt (https://doi.org/10.14806/ej.17.1.200) via: cutadapt -B 98 AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTG -b 99 AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC --interleaved --minimum-length 50. The trimmed reads were aligned to the genome of Bavpat-1 with Bowtie2 ²⁴ using 100 101 parameters: --no-discordant --dovetail --no-mixed --maxins 2000. Primer sequences were

trimmed off from the alignments by soft-clipping the leftmost 33 bases from each sequencing reads using BamUtil ²⁵ via: trimbam {bam_file} - -L 30 R 0 --clip. Variants calling was done using VarScan2 ²⁶ and SAMtools ²⁷ via: samtools mpileup --excl-flags 2048 --excl-flags 256 --fasta-ref {REFERENCE_FAASTA} --max-depth 50000 --min-MQ 30 --min-BQ 30 {BAM_FILE} | varscan pileup2cns --min-coverage 10 --min-reads2 2 --min-var-freq 0.01 --min-freq-for-hom 0.75 --p-value 0.05 --variants 1 > {snp_file}. Sequence logo were generated with logomaker ²⁸ using a custom python script. Plotting of mutation frequencies was done using R and ggplot2 ²⁹. All scripts used for data processing are deposited in GitHub: https://github.com/nicwulab/SARS-CoV-2_in_vitro_adaptation ³⁰. Raw sequencing data has been submitted to the NIH Short Read Archive under accession number: BioProject PRJNA694097.

Production of SARS-CoV-2 RBD in C1 fungus expression systems

A DNA sequence coding for C1 endogenous CBH1 signal sequence, residues 333 to 527 of the Spike (S1) glycoprotein from SARS-CoV-2 Spike S1, a Gly/Ser linker, a SpyTag sequence of 13 amino acids, a Gly/Ser-linker and C-tag (EPEA) flanked by homologous recombination sequences to the C1-cell DNA expression vector and MssI restriction enzyme sites was designed and synthesized by GenScript (Piscataway, New Jersey, USA). The codon usage was optimized for expression in *Thermothelomyces heterothallica* and the construct was cloned as described in Espinosa et al. 2021 ¹⁶ and Lazo et al. 2022 ¹⁷. Production strains for the RBD-Spytag were generated in the C1 strain DNL155 with 14 deletions of native protease genes as described before ¹⁶. Fermentations were carried out at 38°C, pH 6.8 for 5 days as previously described ¹⁶.

RBD-Spytag-C-tag was purified by affinity chromatography on a CaptureSelectTM C-tag affinity matrix (Thermo Fisher Scientific) as described in Espinosa et al. 2021 and Lazo et al.

2022 [16, 17]. The binding activity of C1 produced and C-tag affinity purified RBD-Spytag-C-tag to human Angiotensin Converting Enzyme-2 (ACE2) was studied in Enzyme-Linked Immunosorbent Assay (ELISA). A microtiter ELISA plate was coated with recombinant human ACE2 receptor (SinoBiological) and a dilution series of RBD-Spytag protein was applied on wells. Bound RBD was detected by Capture Select Biotin Anti-C-tag conjugate (ThermoFisher) and the secondary detection agent was Streptavidin-HRP (Cytiva). 3,3′,5,5′-tetramethylbenzidine (TMB) substrate was added and hydrolyzed in a colorimetric reaction. The amount of hydrolyzed substrate is proportional to the concentration of the RBD-Spytag protein present in wells. Hydrolysis reaction was stopped with sulfuric acid, A450nm was measured, and results were analysed by 4-parameter logistic (4PL) analysis. C1 produced RBD-C-tag without a Spytag was used as a comparison.

Coupling of C1 produced RBD to nanoparticles

The nanoparticles mutant i301 aldolase (mi3) was used for coupling to C1 produced RBD ¹⁸. SpyCatcher-mi3-Ctag recombinant protein and mi3-SpyTag-StrepTag were expressed in Rosetta E. coli bacteria from ET28a (https://www.addgene.org/112255/) and pGEX-2T (GE Healthcare Life Sciences). When bacterial cultures reached an OD₆₀₀ of ~0.8 the expression was induced with 0.5 mM IPTG and incubation continued overnight, at room temperature, with shaking. Approx. 16 h later the bacteria were pelleted by centrifugation for 45 min/5° C/4000 xg in 50 mL tubes. Each pellet was resuspended in 10 mL Lysis buffer (50 mM HEPES, 150 mM NaCl, 0.1 % Tx-100, 0.1 mg/mL Lysozyme, cOmpleteTM protease inhibitors) and incubated for 30-60 minutes on ice. Afterwards each tube was subjected to 4 rounds of 30 seconds sonication to disrupt the bacteria. Unlysed bacteria and debris were removed by ultracentrifugation for 45 min/5 °C/25k RPM using a SW32Ti rotor. Proteins were purified from the supernatants using corresponding affinity resin: CaptureSelectTM C-

tag Affinity Matrix (ThermoFisher Scientific) for SpyCatcher-mi3, and Strep-Tactin® Sepharose® resin (IBA-Lifesciences) for mi3-SpyTag, according to manufacturer's recommendations. Concentrations of purified proteins were determined with the NanoDrop ND-1000 spectrophotometer.

For optimizing the coupling of nanoparticles (SpyCatcher-mi2) with the RBD-SpyTag, several molar ratios were tested by incubating overnight in DPBS, without calcium and magnesium (Lonza), at room temperature. The molar ratio of 1:3 RBD:NP offered the best coupling efficiency.

SDS-PAGE and Coomassie staining of antigens

From each mix, $25~\mu L$ (equivalent of $2.5~\mu g$ RBD in lane 1) was mixed with 4x Laemmli sample buffer, heat denatured for 10 minutes and separated on a continuous polyacrylamide gel (prepared in house from 4 %, 10 % and 16 % acrylamide solutions) in running buffer containing 25 mM Tris base, 190 mM glycine and 0.1 % SDS. Afterwards the gel was fixed with a solution of 50 % methanol, 10 % acetic acid in water for 30 minutes. The fixative was removed and the Coomassie Brilliant Blue G-250 staining solution (BioRad) was added for an hour, following distaining in water overnight. The gel was scanned with the LI-COR Odyssey Imaging System.

Animal experiment

Approval for the experiment was given by the Dutch Centrale Commissie Dierproeven (CCD) (Project license number 27700202114492-WP12). Ten weeks old Syrian golden hamsters (*Mesocricetus auratus*) were divided into eight groups with 5 animals each, to evaluate the pre-clinical efficacy of the RBD based vaccine. At day 0, serum samples were collected, and the hamsters were injected intramuscularly with PBS (control group), 10 µg of

SARS-CoV-2 RBD, 10 µg of SARS-CoV-2 RBD coupled to a nanoparticle (RBD-nano), 10 µg SARS-CoV-2 RBD with the non-coupled nanoparticle. As adjuvant aluminum hydroxide (alum) 2% (Croda GmbH) was used in a 2:1 antigen:alum ratio. We also evaluated the antibody response of 10 µg SARS-CoV-2 RBD, RBD-nano and the RBD plus the nanoparticle in combination with alum as adjuvant. Hamsters received a boost with the respective vaccine candidates 28 days after the first dose. Hamsters were challenged intranasally with 10⁴ TCID₅₀ of SARS-CoV-2 42 days after the first dose of vaccination. Four days post infection, the animals were humanely euthanised, necropsy was conducted, and tissues were collected for further processing.

RT-qPCR

Viral RNA was extracted using QIAmp Viral extraction kit according to the manufacturer's instructions. RT-qPCR assay was performed using the protocol established by the Institut Pasteur ¹⁹. In brief, primers and probe targeting SARS-CoV-2 RdRp gene were used following the Super Script III Platinum One-Step RT-qPCR (Invitrogen) protocol. Amplification was performed as followed: reverse transcription 55 °C 20 min, denaturation 95 °C 3 min, followed by 50x cycles of amplification at 95 °C 15 s, 58 °C 30 s where data was acquired. Further analysis and Cq values were determined using the Bio-Rad CFX Maestro software (BioRad).

Virus infectivity titration

Infectious SARS-CoV-2 in lung and nasal turbinate tissues was quantified in Vero cells (ATCC CCL-81) in 96 well plates, as previously described ^{5,20}. In short, 10-fold serial dilutions of homogenized tissues were used to infect the cells, starting dilution 100- and 10-fold for lung and nasal turbinate homogenate, respectively. Plates were incubated in a

humidified atmosphere, at 37°C, 5% CO2. Cytopathic effect was evaluated 5 days post infection. Virus titers (TCID₅₀/ml) were calculated using the Spearman-Karber method.

SARS-CoV-2 RBD ELISA

Antibodies against SARS-CoV-2 RBD were detected via an in-house IgG ELISA, as previously described ²¹. In short, 96-well microtiter ELISA plates were coated with SARS-CoV-2 Wuhan-Hu-1 RBD protein in PBS. Plates were incubated, blocked with 1 % skimmed milk powder in PBS. After 1 h incubation at 37 °C, a 1:50 dilution of the serum samples were added, plates were incubated, washed and incubated with goat anti-Syrian hamster IgG H&L conjugated to horse radish peroxidase (Abcam). Next, plates were washed and TMB substrate (Invitrogen) was added. Finally, after incubation 2M H₂SO₄ was added to stop the reaction and optical density at 450 nm was measured using a Tecan Infinite 200 Microplate reader (Tecan).

Virus neutralization assay

VN antibodies present in the sera were detected as described previously ^{21,22}. In short, inactivated serum samples (56 °C, 30 min) were first diluted 1:10 followed by 2-fold serial dilutions. Vero cells (ATCC CCL-81) were seeded in a 96-well tissue culture plate. Diluted sera were mixed with 200 TCID₅₀ of SARS-CoV-2 Wuhan-Hu-1 and incubated for 1 h at 37 °C. Serum-virus mix was added to a monolayer of Vero cells and further incubated at 37 °C, 5 % CO₂. After 8 h incubation, cells were fixed using 4 % PFA and incubated for 30 min at room temperature. Next, PFA was removed, and cells were incubated for 15 min with 80 % methanol. For staining, plates were blocked using 1 % BSA in PBS-0,05 % Tween 20 for 30 min at 37 °C. SARS-CoV-2 was detected using a 1:1000 dilution of rabbit polyclonal anti-SARS-CoV-2 nucleocapsid (Sino Biological). After 1 h incubation at 37 °C, cells were

washed with PBS-0,05 % Tween 20, and incubated with a 1:1000 dilution of anti-rabbit-IgG-Alexa Flour 488 (Invitrogen). Finally, cells were washed twice with PBS-0,05 % Tween 20. Fluorescent cells were counted using the C.T.L. S6 Ultimate-V Analyzer and data was analyzed using CTL ImmunoSpot® software. Neutralizing antibody titers are expressed as the dilution that gave a 50 % reduction of stained cells (NT50).

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

231

227

228

229

230

Rhabdoviral pseudotype particles for virus neutralization assay

Pseudotyped Vesicular stomatitis virus (VSV) particles bearing the spike protein of SARS-CoV-2 variants of concern (VOC) were prepared as described previously ⁵. In short, replication-deficient VSV which encodes for enhanced fluorescent protein and firefly luciferase (VSV*ΔG-GFP-FLuc), plasmids that encode for SARS-CoV-2-S Wuhan, D614G, Alpha, Beta, Gamma, Omicron BA.1 and Omicron BA.5 variants were provided by Stefan Pöhlmann. 293T cells were transfected with the desired spike protein or empty vector as control. Cells were infected with VSV*ΔG-GFP-FLuc 24 h after transfection and incubated 1 h at 37 °C. Then, cells were washed three times with PBS, a 1:1000 dilution of supernatant from I1-hybridoma cells (ATCC, CRL-2700) was added and cells were incubated for 1 h at 37 °C. Next, cells were washed once with PBS and fresh medium was added. Supernatant was collected after an incubation period of 16-18 h, cellular debris was removed by centrifugation (4500 rpm, 10 min) and aliquots of clarified supernatant were prepared and stored at -80 °C until use. Pseudotyped concentration was calculated by TCID₅₀. VN antibodies against SARS-CoV-2 variants of concern was performed as follows: Serum samples were initially diluted 1:10, followed by 1:2 serial dilutions until a 1:2560 dilution. Each serum sample was mixed with 200 TCID₅₀ of each variant and incubated for 1 h at 37 °C. Afterwards, serum-pseudotype particle mix was added to Vero cells. Luciferase activity was measured as indication for transduction efficiency after 16-18 h incubation. For this,

cells were lysed using Lysis-Juice (PJK) according to the manufacturer's instructions. Next, cell lysates were transferred to a white 96 well plate and firefly luciferase activity was measured by using Beetle-Juice substrate (PJK) and a Tecan Infinite 200 Microplate reader. Antibody titers are expressed as the dilution that gave a 50 % reduction in transduction efficiency (VNT50).

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

252

253

254

255

256

Immunohistochemistry analysis

For histopathology, left lung lobes were fixed by injection and immersion with 10% buffered formalin. Tissues were subsequently embedded in paraffin and cut into 2 µm thick sections. Lesions were evaluated on hematoxylin and eosin (HE) stained sections with a semiquantitative scoring system described previously ³¹, with mild modifications. Alveolar inflammation was scored as follows: 0 = no lesion; 1 = minimal, occasional small foci, less than 1 % of tissue affected; 2 = mild, 2-25%; 3 = moderate, 26-50%; 4 = severe, 51-75%, 5 = subtotal, >75% of tissue affected. In addition, the presence or absence of alveolar edema, hemorrhage, necrosis/fibrin exudation and pneumocyte type II hyperplasia was recorded (0 = not present; 1 = present). Inflammatory infiltrates and necrosis in the airways (bronchi and bronchioli) were scored as follows: 0 = no lesion; 1 = minimal, occasional small foci of inflammation, less than 1 % of tissue affected; 2 = mild, 2-25%; 3 = moderate, 26-50%; 4 = severe, 51-75%, 5 = subtotal, >75% of tissue affected. In addition, the presence or absence of epithelial necrosis, hyperplasia and intraluminal exudate was recorded (0 = not present; 1 = present). Assessment of vascular lesions included scoring of perivascular infiltrates (0 = no; 1 = 1-2 cell layers; 2 = no) 3-5 cell layers; 3 = 6-10 cell layers; 4 = > 10 cell layers) and presence or absence of vasculopathy (characterized by endothelial cell hyperplasia, endothelialitis and and mural inflammatory infiltrates) and perivascular haemorrhage (0 = not present; 1 = present). The total score reflects the sum of all scores for the separate compartments.

Immunohistochemistry for SARS-CoV-2 nucleoprotein was performed using a monoclonal mouse primary antibody (Sino Biological, Peking, China-40143-MM05; dilution 1:16000, incubation over night at 4°C), the Dako EnVision+ polymer system (Dako Agilent Pathology Solutions) and 3,3′-Diaminobenzidine tetrahydrochloride (Sigma-Aldrich) as described previously 32,33 . The amount of viral antigen was quantified separately in the alveoli and the airways with a 5-tiered semiquantitative scoring system: 0 = no antigen; 1 = minimal, occasional positive cells, less than 1 % of tissue affected; 2 = mild, 2-25%; 3 = moderate, 26-50%; 4 = severe, 51-75%, 5 = >75% of cells immunolabelled). In addition, the presence or absence of immunolabelled cells in the bronchial/bronchiolar exudate was recorded (0 = absent, 1 = present). The combined score is the sum of the alveolar and the airways scores. The evaluation of histology and immunohistochemistry was performed by a board-certified pathologist (MC), who was blinded to the group assignment. Scoring was confirmed by a second board certified pathologist (WB).

Statistical analysis

The statistical significance for the different assays was analyzed using GraphPad Prism

version 9 (https://www.graphpad.com).

Results

296

297 SARS-CoV-2 RBD production in the T. heterothallica, C1 protein expression system and 298 coupling to nanoparticles 299 The RBD vaccine candidate used was based on the sequence of the RBD of SARS-CoV-2 300 Wuhan-Hu-1. A synthetic gene encoding the RBD fused C-terminally with Spytag was 301 synthesized and cloned into a C1 expression vector under the bgl8 promoter. Production 302 strains were generated based on this vector in a low-protease background C1 strain. 303 Cultivation of the production strain in a fed-batch process for 5 days resulted in production of 304 RBD-Spytag at approximately 0.45 g/l level. Single step purification of the RBD-Spytag 305 molecule with C-tag affinity chromatography yielded a preparate of moderate purity (Figure 306 1) that was used in subsequent studies. ELISA for binding to the ACE2 receptor showed clear 307 but somewhat lower binding activity as compared with a RBD preparate that was used as a 308 control. At least part of the lower binding could be explained by the lower purity of the RBD-309 Spytag preparate. The RBD was conjugated to a nanoparticle and coupling efficiency was 310 verified using SDS-PAGE (Figure 2A). 311 312 SARS-CoV-2 RBD-nano based vaccines induce high levels of anti-RBD and VN antibodies 313 Hamsters were immunized twice with RBD alone (RBD), RBD mixed with a nanoparticle 314 (RBD+ nano) or RBD coupled to a nanoparticle (RBD-nano), either with or without alum 315 (Figure 2B). Serum samples were collected on day 0, day 28 (prior receiving the booster dose 316 of the vaccine), day 42 (day of challenge) and day 46 (day of necropsy) to evaluate the 317 antibody response induced by the vaccine (Figure 2C). At day 28 after the first immunization 318 all hamsters that had received the RBD-nano with adjuvant (RBD-nano+alum) had developed 319 detectable SARS-CoV-2 RBD serum antibodies when tested by SARS-CoV-2 RBD-based 320 ELISA (Figure 3A) or virus neutralization assay (Figure 3B). These responses increased after

receiving the second dose (Figure 3C and D). In contrast, none of the other groups had developed significant neutralizing antibody levels before virus challenge. After SARS-CoV-2 challenge (day 46), hamsters in the respective vaccinated groups showed variable antibody responses as revealed by RBD-based ELISA and virus neutralization assay, with still significantly higher levels (p<0.0001) in the RBD-nano with adjuvant group (Figure 3E and F). Antibodies induced after receiving both vaccine doses, on day 42, neutralized D614G and Alpha variants to a similar extent as the Wuhan variant, and to a lesser extent Beta and Gamma variants (Figure 4A). Not unexpectedly, the antibodies induced were not able to neutralize Omicron lineages BA.1 and BA.5. This was further confirmed when measuring the neutralizing antibody responses from serum taken on day 46 (Figure 4B).

Anti-SARS-CoV-2 vaccination reduces viral titers in the lungs upon virus challenge To evaluate the efficacy of the vaccine candidates against virus infection, hamsters were challenged intranasally with SARS-CoV-2 (D614G) and necropsy was conducted four days post infection, where lungs and nasal turbinates were collected. To determine the presence of viral RNA and infectious virus in the samples, we used RT-qPCR and virus titration respectively. A 10- to 100-fold reduction in infectivity was detected in the lungs of the groups that had received the RBD-nano without and with adjuvant, respectively (Figure 5B). Such differences were not found in nasal turbinate samples when compared to the control group (Figure 5A). However, reduction of viral titers in lung and nasal turbinates in the group who received the RBD-nano+Alum was statistically significant (*p<0.05) when compared to viral titers present in the control group. At the RNA level no apparent differences among the groups were observed (data not shown). Next, lungs, and nasal turbinates preserved in 10 % formalin were examined for

histopathological changes and viral antigen expression. We observed that hamsters

immunized with the adjuvanted RBD-nano+Alum showed significant reduction in viral antigen detected in the lungs, associated with reduction of lesions (Figure 6), which was not the case for the nasal turbinates.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

346

347

348

Discussion

Like for other coronaviruses, the S protein of SARS-CoV-2 is highly immunogenic and the main target of neutralizing antibodies. Hence, it has been used as the main antigen for most of the vaccines developed. Depending on the platform used for vaccine production, full length SARS-CoV-2-S-based vaccines may confer between 65-95 % protection in humans³⁴. Vaccines based on mRNA expressing the S protein are among the best to induce VN antibodies and provide protection against SARS-CoV-2 associated disease. These vaccines, to varying degrees, also induce antibodies that cross neutralize newly arisen variants of concern and reduce severe disease manifestations caused by these variants ³⁵. However, some of the major disadvantages of these vaccines are the relative manufacturing complexity, high production costs and stringent cold-chain requirements, which collectively limit their applicability, especially in low-and-middle-income countries. New generation vaccines based on purified S protein produced in a fungal expression system like the *Thermothelomyces* heterothallica, C1 system, would not have these disadvantages. Here, we evaluated the immunogenicity and efficacy of a SARS-CoV-2 RBD based vaccine candidate expressed in the C1 fungal system using Syrian golden hamsters as animal model. Our C1-RBD-Spytag-based vaccine candidate was produced at about 0.45 g/L concentrations under so far non-optimized fungal fermentation conditions which resulted in a product that would not require stringent cold chain conditions. Recently, the production level of C1-RBD reached > 2 g/l in a 5-day fermentation (data not shown). Moreover, in the study done by Ramot et. al., it was shown that in New Zealand rabbits, the SARS-CoV-2- RBD produced

with the C1 system, did not induced any adverse effects or systemic toxicity and induced the production IgG antibodies against SARS-CoV-2³⁶. Furthermore, Lazo and colleagues, proved that immunization with SARS-CoV-2-RBD produced in the C1 system, induced a similar humoral response in mice as recombinant SARS-CoV-2-RBD produced in HEK293 cells ¹⁷. We also showed that one single immunization with the RBD-nano with alum quite efficiently induced SARS-CoV-2 neutralizing antibodies to higher levels than the non-adjuvanted equivalent. Dalvie and colleagues also showed that when using alum as an adjuvant with RBD based viral like particles as a vaccine, the induction of VN antibodies proved to be more efficient than the CpG adjuvanted alternative ^{37,38}. These results are in partial disagreement with those by Merkuleva and colleagues who evaluated the immune response induced by a trimeric uncoupled RBD based candidate vaccine expressed in mammalian cells in different animal models. They showed a dose dependent virus VN antibody response in the hamster model, that however proved to be inferior to responses found in other animal models ³⁹. In our hands coupling of the SARS-CoV-2 RBD to a nanoparticle proved to be crucial for the induction of high titre VN antibodies and protection, as we have shown previously for a MERS-CoV candidate vaccine in different animal species ¹³. It is however puzzling to note, that in spite of inducing high levels of VN antibody in the group that received the RBDnano+alum vaccine, the reduction of virus infectivity (10 to 100 fold) in the lungs was less pronounced than that observed when golden Syrian hamsters are pre-treated with human monoclonal antibodies against SARS-CoV-2, that resulted in similar VN antibody titers ⁴⁰. The reduction of virus infectivity titres in the lungs of hamsters vaccinated with candidate alum adjuvanted RBD-nano vaccine did reach statistical significance when compared to the alum control group. This was also observed when comparing viral antigen levels (Figure 6B) and lesions in the lungs (Figure 6A). Reduction of virus infectivity titres and lesions were not observed in the nasal turbinates. Similar results have been obtained by other groups using the

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

Syrian hamster model, Dalvie and colleagues showed that hamsters that received the RBD vaccine recovered faster than the control group ³⁸. Moreover, in the study conducted by Chiba et. al. it was shown that a SARS-CoV-2-S based vaccine coupled to a nanoparticle conferred full protection against SARS-CoV-2 challenge in hamsters ^{38,41}. Due to the continuous emergence of VOCs, it is important to know to what extent a vaccine provides cross-protection against arising virus mutants, and especially VOCs. Therefore, we also evaluated the cross-neutralizing capacities of the hamster serum antibodies induced by the RBD-nano+alum, our most efficient vaccine candidate, against different VOCs in a VSV pseudotype-based virus neutralization assay. We showed that even though most of the relevant VOC mutations are located within the RBD, the induced hamster serum antibodies appeared to neutralize some of the VOCs tested, albeit with different efficiency. Moreover, the induced antibodies did not cross neutralize the recent Omicron (lineage BA-1 and BA.5) variants. This means that a vaccine based on this technology, would also need to be bivalent or updated, in order to match the coupled RBD to that of the currently circulating variants. Interestingly, the C1 vaccine platform, would allow to exchange the SARS-CoV-2 RBD in short time and with high yields. In a recent study Walls and colleagues showed that the VN antibodies induced by an RBD vaccine or the full S protein, exhibited different neutralization efficacy depending on the animal model used. Neutralizing antibodies induced in mice showed better cross neutralization against Beta and Gamma VOCs (only 2-fold reduction efficiency) than VN antibodies induced in non-human primates (NHP) which were ~6-8-fold less efficient in neutralizing these VOCs ⁴². In our study, we also observed that neutralizing antibodies induced in hamsters are affected by VOCs in a similar way as in NHP (~10-fold reduction in neutralization). Most importantly, these reduced responses against some variants, seen in NHPs and in hamsters, probably better reflect what has been observed in most human vaccine studies ^{35,43,44}. Collectively our data show that it is important to consider the way the

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

antigen is presented, as well as the animal model in which vaccines are being tested, since the immune response observed even within hamsters appears to vary considerably from one study to another. Taken together, we have shown that an adjuvanted C1 RBD-nano+alum based vaccine induces potent VN antibodies, and results in reduced viral load and lung damage upon subsequent SARS-CoV-2 infection in hamsters. Given the advantages of this approach, it should be further evaluated as an alternative vaccine development strategy that may overcome some of the limitations of the current COVID-19 vaccines and vaccine candidates, and therefore make it more applicable for low- and middle-income countries. Acknowledgements We thank Kristin Laudeley and Margarethe Jentzsch for their technical support. This study was performed as part of the Zoonotic Anticipation and Preparedness Initiative (ZAPI project) [Innovative Medicines initiative (IMI) grant 115760], with assistance and financial support from IMI and the European Commission and contributions from EFPIA partners. B.L.H., is supported by the NIH/NIAID Centers of Excellence for Influenza Research and Response (CEIRR) under contract 75N93021C00014-Icahn School of Medicine at Mt. Sinai. This research was also funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation AO, FKK, IS, WB, -398066876/GRK 2485/1; Ministry of Science and Culture of Lower Saxony in Germany (14 – 76103–184 CORONA-15/20, WB and AO); and by the COVID-19 Research Network of the State of Lower Saxony (COFONI) with funding from the ministry of science and culture of Lower Saxony, Germany (14–76403–184, MC, WB). This Open Access publication was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -491094227 "Open Access Publication Costs" and the University of Veterinary Medicine

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

- Hannover, Foundation. ICA was funded through the Utrecht Molecular Immunology Hub
- 446 (Utrecht University).

447 448

Author contributions

449

- 450 Production, expression and coupling of RBD, RT, ME, MS, MGW, MV, ICA, BJB; animal
- experiments, MGH, FKK and GvA; pathological investigation, WB, MC; supervision
- 452 ADMEO, BLH; VNT and VSVpp MGH, FKK, IS; study conception and coordination,
- 453 ADMEO, BLH, RT; manuscript writing, MGH, FKK, ADMEO with input from all other
- authors.

455 **Disclosure statement**

- 456 RT and ME work for Dyadic International, Inc. and may use the vaccine for commercial use.
- BJB and BLH filed a patent application on coronavirus nanoparticle vaccines. Other authors
- 458 have no competing interests to declare.

459 **Data availability**

All data needed to evaluate the conclusions in this paper are present in the paper.

461 References

- 1. Center for Systems Science and Engineering, J. H. U. COVID-19 Dashboard. https://coronavirus.jhu.edu/map.html (2021).
- 464 2. WHO. Coronavirus disease (COVID-19) pandemic. https://covid19.who.int/ (2022).
- Gorbalenya, A. E. *et al.* The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. *Nat Microbiol* **5**, 536–544 (2020).
- 468 4. Ning, S., Yu, B., Wang, Y. & Wang, F. SARS-CoV-2: Origin, Evolution, and Targeting Inhibition. *Front Cell Infect Microbiol* **11**, 1–19 (2021).
- 5. Du, W. *et al.* An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. *Sci Immunol* eabp9312 (2022) doi:10.1126/sciimmunol.abp9312.
- 6. Gu, C. *et al.* A human antibody of potent efficacy against SARS-CoV-2 in rhesus macaques showed strong blocking activity to B.1.351. *MAbs* **13**, (2021).
- 475 7. Kim, C. *et al.* A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. *Nat Commun* **12**, 1–10 (2021).
- 477 8. WHO. COVID-19 advice for the public: Getting vaccinated.
- 478 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-
- 479 *vaccines/advice* (2022).

- 480 9. Huo, J. *et al.* Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. *Nat Struct Mol Biol* **27**, 846–854 (2020).
- 482 10. Merkuleva, I. A. *et al.* Are Hamsters a Suitable Model for Evaluating the
 483 Immunogenicity of RBD-Based Anti-COVID-19 Subunit Vaccines? *Viruses* **14**,
 484 (2022).
- Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280.e8 (2020).
- 487 12. Zella, D. *et al.* The variants question: what is the problem? *J Med Virol* 0–2 (2021) doi:10.1002/jmv.27196.
- 489 13. Beer, M. *et al.* Zoonoses Anticipation and Preparedness Initiative, Stakeholders Conference, February 4 & 5, 2021. in (2021).
- 491 14. Visser, H. *et al.* RESEARCH: Development of a mature fungal technology and 492 production platform for industrial enzymes based on a Myceliophthora thermophila 493 isolate, previously known as Chrysosporium lucknowense C1. *Industrial* 494 *Biotechnology* **7**, 214–223 (2011).
- Chu, H. *et al.* Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. *Lancet Microbe* 1, e14–e23 (2020).
- Espinosa, L. A. *et al.* In-solution buffer-free digestion allows full-sequence coverage and complete characterization of post-translational modifications of the receptor-binding domain of SARS-CoV-2 in a single ESI–MS spectrum. *Anal Bioanal Chem* 413, 7559–7585 (2021).
- 503 17. Lazo, L. *et al.* A recombinant SARS-CoV-2 receptor-binding domain expressed in an engineered fungal strain of Thermothelomyces heterothallica induces a functional immune response in mice. *Vaccine* **40**, 1162–1169 (2022).
- 506 18. Bruun, T. U. J., Andersson, A. M. C., Draper, S. J. & Howarth, M. Engineering a 507 Rugged Nanoscaffold to Enhance Plug-and-Display Vaccination. *ACS Nano* **12**, 8855– 508 8866 (2018).
- 509 19. Corman, V. M. *et al.* Detection of 2019 novel coronavirus (2019-nCoV) by real-time 810 RT-PCR. *Eurosurveillance* **25**, (2020).
- 511 20. Armando, F. *et al.* SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. *Nat Commun* **13**, 3519 (2022).
- 513 21. Schulz, C. *et al.* SARS-CoV-2 specific antibodies in domestic cats in Europe during the first COVID-19 wave. *Emerg Infect Dis* (2021).
- Jonczyk, R. *et al.* Combined Prospective Seroconversion and PCR Data of Selected
 Cohorts Indicate a High Rate of Subclinical SARS-CoV-2 Infections-an Open
 Observational Study in Lower Saxony, Germany. *Microbiol Spectr* 10, e0151221
- 518 (2022).
- 519 23. Oude Munnink, B. B. *et al.* Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. *Nat Med* **26**, 1405–1410 (2020).
- 522 24. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**, 357–9 (2012).
- 524 25. Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. *Genome Res* **25**, 918–25 (2015).
- 527 26. Koboldt, D. C. *et al.* VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. *Genome Res* **22**, 568–76 (2012).

- 529 27. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–9 (2009).
- Tareen, A. *et al.* MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect. *Genome Biol* **23**, 98 (2022).
- 533 29. Wickham, H. Programming with ggplot2. in 241–253 (2016). doi:10.1007/978-3-319-534 24277-4_12.
- 535 30. Wu, Y. *et al.* A recombinant spike protein subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in hamsters. *Sci Transl Med* **13**, (2021).
- 538 31. Bošnjak, B. *et al.* Intranasal Delivery of MVA Vector Vaccine Induces Effective 539 Pulmonary Immunity Against SARS-CoV-2 in Rodents. *Front Immunol* **12**, 772240 540 (2021).
- 541 32. Becker, K. *et al.* Vasculitis and Neutrophil Extracellular Traps in Lungs of Golden Syrian Hamsters With SARS-CoV-2. *Front Immunol* **12**, 640842 (2021).
- Allnoch, L. *et al.* Vascular Inflammation Is Associated with Loss of Aquaporin 1
 Expression on Endothelial Cells and Increased Fluid Leakage in SARS-CoV-2
 Infected Golden Syrian Hamsters. *Viruses* 13, (2021).
- 546 34. Feikin, D. R. *et al.* Duration of effectiveness of vaccines against SARS-CoV-2 547 infection and COVID-19 disease: results of a systematic review and meta-regression. 548 *The Lancet* **399**, 924–944 (2022).
- 549 35. Luczkowiak, J. *et al.* Neutralizing response against SARS-CoV-2 variants 8 months 550 after BNT162b2 vaccination in naïve and COVID-19 convalescent individuals. *J Infect Dis* (2021) doi:10.1093/infdis/jiab634.
- 552 36. Ramot, Y. *et al.* Toxicity and Local Tolerance of a Novel Spike Protein RBD Vaccine 553 Against SARS-CoV-2, Produced Using the C1 Thermothelomyces Heterothallica 554 Protein Expression Platform. *Toxicol Pathol* **50**, 294–307 (2022).
- 555 37. Routhu, N. K. *et al.* SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. *Nat Commun* **12**, 1–15 (2021).
- 558 38. Dalvie, N. C. *et al.* Engineered SARS-CoV-2 receptor binding domain improves 559 manufacturability in yeast and immunogenicity in mice. *Proc Natl Acad Sci U S A* **118**, 560 (2021).
- Merkuleva, I. A. et al. Are Hamsters a Suitable Model for Evaluating the
 Immunogenicity of RBD-Based Anti-COVID-19 Subunit Vaccines? Viruses 14, 1060
 (2022).
- 564 40. Du, W. *et al.* An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. *Sci Immunol* eabp9312 (2022) doi:10.1126/sciimmunol.abp9312.
- 567 41. Chiba, S. *et al.* Multivalent nanoparticle-based vaccines protect hamsters against SARS-CoV-2 after a single immunization. *Commun Biol* **4**, 2–10 (2021).
- Walls, A. C. *et al.* Distinct sensitivities to SARS-CoV-2 variants in vaccinated humans and mice. *Cell Rep* 111299 (2022) doi:10.1016/j.celrep.2022.111299.
- 571 43. Garcia-Beltran, W. F. *et al.* Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. *Cell* **184**, 2372-2383.e9 (2021).
- 573 44. Stamatatos, L. *et al.* mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. *Science* (2021) doi:10.1126/science.abg9175.

Figure legends

575576

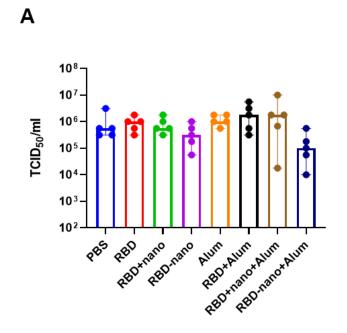
Figure 1. Production of RBD-Spytag in C1 fermentation process and C-tag-affinity-purified RBD-Spytag analyzed in SDS-PAGE with Coomassie Blue dye staining. Lane 1: MW protein marker, lane 2: 98 h fermentation supernatant, lane 3: 116 h fermentation supernatant which is the starting material for the affinity purification, lanes 4-6: final purified and dialyzed RBD-Spytag protein as three different amounts loaded in SDS-PAGE. The RBD-Spytag, corresponding to the correct size of 24 kDa protein, is marked with an arrow.

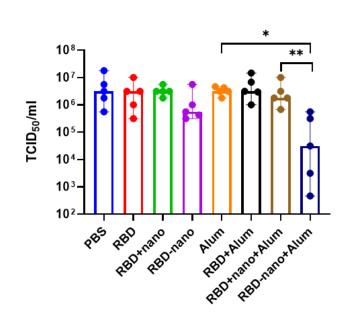
Figure 2. Analysis of antigens used for immunization and immunization scheme. A) SDS-PAGE analysis was performed on the SARS-CoV-2 spike RBD antigens or RBD/nanoparticle mixtures used for immunization (left panel). For comparison, nanoparticles were also analyzed separately (right panel). Asterisks indicate contaminating yeast proteins. The abbreviations ST, SC and NP stand for SpyTag, SpyCatcher and nanoparticles, respectively. B) Antigen combinations tested in the Syrian hamster model. C) Schematic representation of the study design (Created with BioRender.com).

Figure 3. SARS-CoV-2 RBD-nano vaccine induces high neutralizing antibodies titers. Antibodies induced by the different vaccine formulations and neutralizing antibodies titers were quantified at A-B) 28 days, C-D) 42 days after receiving the first immunization dose and E-F) at the day of necropsy 46 days after immunization. IgG antibodies (A, C, E) were detected by RBD-ELISA, dotted lines indicate the assay cut-off value ($\bar{x} + 2SD$) based on the control group. Neutralizing antibodies titers (B, D, F) are expressed as the reciprocal of the dilution that gave a 50% reduction of stained cells. P values were calculated by a two-way ANOVA test, mean \pm SD are presented. ****p<0.0001; ***p<0.001; **p<0.01; **p<0.05; ns not significant.

Figure 4. Neutralizing antibodies induced by SARS-CoV-2 RBD-nano vaccine neutralize some SARS-CoV-2 VOCs. Virus neutralization assay against D614G, Alpha, Beta, Gamma, and Omicron and Omicron BA.5 variants of concern was done using vesicular stomatitis virus pseudotyped with the respective spike protein. Titers are expressed as the reciprocal dilution that reduced entry to 50%. P values were calculated using a one-way ANOVA analysis. ****p<0.0001; ***p<0.001; **p<0.01; *p<0.05; ns not significant.

Figure 5. Viral load in the lung is reduced after vaccination with RBD-nano plus adjuvant. Viral titers were calculated in A) nasal turbinate and B) lung using TCID₅₀. P values were calculated using a Brown-Forsythe and Welch ANOVA test. ****p<0.0001; ***p<0.0001;

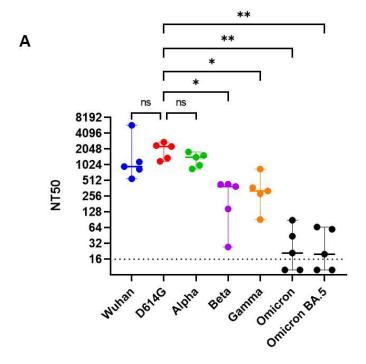

**p<0.01; *p<0.05; ns not significant.


Figure 6. Histopathological lesions and viral antigen in the lungs of SARS-CoV-2 infected hamsters. A and B) Representative images of a PBS-treated infected control hamster showing multifocal areas of inflammation in alveoli (black arrowheads and inset in A) associated with abundant viral antigen in pneumocytes (brown signal, black arrowheads and inset in B). Inflammatory infiltrates are also present in the airways (white arrowheads in A), but only occasional bronchial epithelial cells are positive for viral antigen (white arrowheads in B). C) and D) Representative image of a hamster vaccinated with an RBD vaccine (RBD-nano+Alum) showing inflammatory lesions and viral antigen exclusively in the main airways (white arrowheads, inserts). A) and C): hematoxylin and eosin stain. B) and D) immunohistochemistry for SARS-CoV-2 nucleocapsid protein. Insets show 400x magnification of areas delineated by rectangles in the overview images. E) Semiquantitative score of histological lesions induced by SARS-CoV-2 infection. F) Semiquantitative score of SARS-CoV-2 antigen present in

- 627 alveoli and airways. P values for were calculated using a one-way ANOVA analysis.
- 628 ****p<0.0001; ***p<0.001; **p<0.01; *p<0.05; ns not significant.

Figures

Figure 5.



В

Figure 1

Figure 5

Figure 4

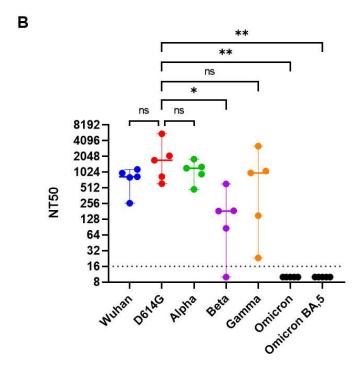


Figure 2

Figure 4

Figure 3

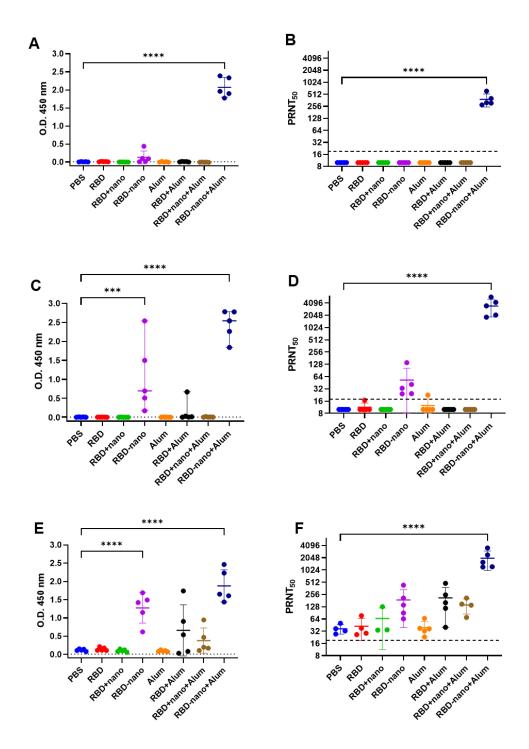


Figure 3

Figure 3

Figure 1.

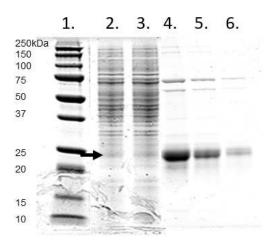
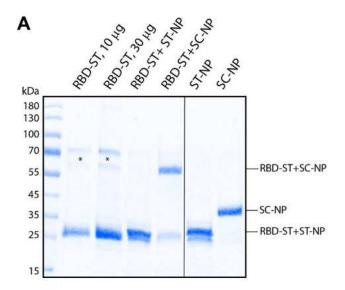



Figure 4

Figure 1

Figure 2.

Group	Immunization
1	PBS
2	RBD
3	RBD + nanoparticle (RBD+nano)
4	RBD-nanoparticle coupled (RBD-nano)
5	Alum
6	RBD + Alum
7	RBD + nanoparticle + Alum (RBD+nano+Alum)
8	RBD-nanoparticle coupled + Alum (RBD-nano+Alum)

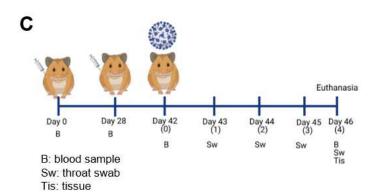
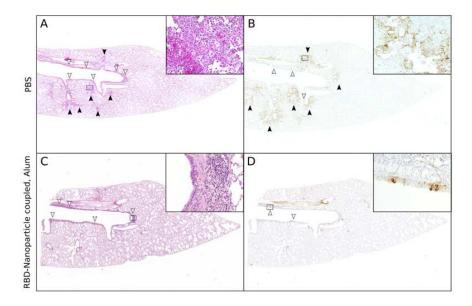



Figure 5

Figure 2

Figure 6.

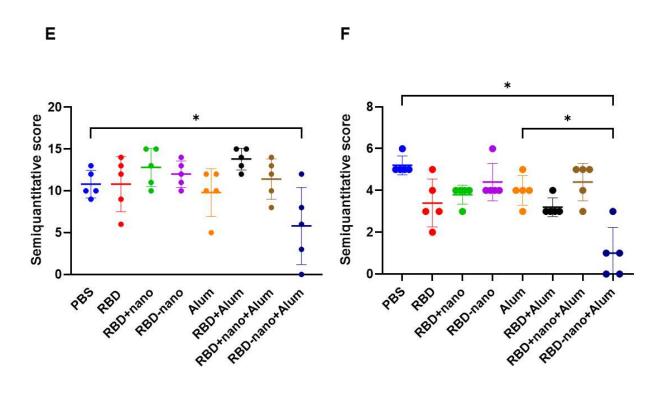


Figure 6

Figure 6